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ROADMAP

 Missouri and Yellowstone Basin Overview
» General Basin Statistics

» Main Water Management Agencies
* The changing nature of drought

« Summary on utilizing this information in drought
planning work
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RIVER STATS

» Longest River in the US.

» Largest Watershed in the US.
»More than 500,000 square miles
» 10 states and two Canadian provinces
»One sixth of the area of the US

* More than 17,000 dams/reservoirs/
diversions

 Annual Flow Vol. ~ 40 million acre feet
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MISSOURI MAIN STEM BASIN
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MISSOURI MAIN STEM BASIN
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 the
Lower Missouri Basin
(region 6) provides the
majority of the sustaining
outflow contributions

Over the Summer, flow
contributions from the
Upper Missouri Basin
(region 1) provide the
majority (~50%) of the
total outflows reflecting
the spring snowmelt
contribution.

Wise, E. K., C. A. Woodhouse, G. J. Mccabe, G. T. Pederson, and
J.-M. St-Jacques (2018), Hydroclimatology of the Missouri River
Basin, J. Hydrometeor, 19(1), 161-182, doi:10.1175/JHM-
D-17-0155.1.
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Percent flow contributions
from the Upper Basin to
total basin outflows have
been declining over the
20t century

1940 1950 190 1970 1980 1990 2000 2010

water year
% Wise, E. K., C. A. Woodhouse, G. J. Mccabe, G. T. Pederson, and
‘ J.-M. St-Jacques (2018), Hydroclimatology of the Missouri River

D-17-0155.1.
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Which is in large part due
to declining winter
snowpack that melts out
earlier in the spring.

BUT, its also related
changes in precipitation
form.

More Rain and Less Snow

Wise, E. K., C. A. Woodhouse, G. J. Mccabe, G. T. Pederson, and
J.-M. St-Jacques (2018), Hydroclimatology of the Missouri River
Basin, J. Hydrometeor, 19(1), 161-182, d0i:10.1175/JHM-
D-17-0155.1.



Sub-region 1
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AND, Enhanced
Evapotranspiration

Wise, E. K., C. A. Woodhouse, G. J. Mccabe, G. T. Pederson, and
J.-M. St-Jacques (2018), Hydroclimatology of the Missouri River
Basin, J. Hydrometeor, 19(1), 161-182, d0i:10.1175/JHM-
D-17-0155.1.



S0 what does this mean for Drought”

s

Vernon Evans, a Montana dust bowl emigrant
(1936)
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An Increasingly
Negative
Temperature
Influence
IS evident in driving
droughts

With a sustained
shift in influence
beginning in 1980

Martin, J., Pederson, G.T., et al., (in review), Increased
drought intensity driven by warming in the United
States’ largest river basin, Nature Climate Change,
submitted, p. 1-38.

*Preliminary Data, do not cite or reproduce until
published.
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Modern Drought Intensity in Perspective
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Resulting in the
Turn-of-The-Century
Drought (2000-2010)
ranking as one of the

hottest and most
intense droughts in
the past 1,200 years

Martin, J., Pederson, G.T., et al., (in review), Increased
drought intensity driven by warming in the United
States’ largest river basin, Nature Climate Change,
submitted, p. 1-38.

*Preliminary Data, do not cite or reproduce until
published.



Modern Drought Variability in Perspective
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Warming Temperatures
and

appear to also be causing
Increased Variability in
Streamflow

Martin, J., Pederson, G.T., et al., (in review), Increased drought intensity driven
by warming in the United States’ largest river basin, Nature Climate Change,
submitted, p. 1-38.

*Preliminary Data, do not cite or reproduce until published.



The Changing Character of Modern Drought
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Warming Temperatures are
leading to reduced runoff
efficiency during droughts
causing them to be more
iIntense than even historic

severe events like the 1930s

Dustbowl Drought

. Increasead
variance perhaps means
droughts will tend to be
shorter in duration, however
they’ll also be increasingly
hard to predict

Martin, J., Pederson, G.T., et al., (in review), Increased drought intensity driven
by warming in the United States’ largest river basin, Nature Climate Change,
submitted, p. 1-38.

*Preliminary Data, do not cite or reproduce until published.



SUMMARY

Historic Observations and Paleo- Streamflow & Snowpack
Records Demonstrate:

> Less snowpack that melts and runs off earlier
» More rain and less snow

» Reduced runoff efficiency (precipitation is less effective at
generating streamflow / surface water resources)

»> A Sticky System (Wet/Dry conditions can last years to decades) is
becoming less sticky

» Temperature and Precipitation play an important role, sometimes
moderating drought & sometimes intensifying drought

» Expect all of these relationships to continue into the future

ZUSGS
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SUMMARY

Future Projections of Streamflow & Snowpack Suggest:

» Increased cool season precipitation

» Flat to decreasing summer season precipitation

» More rain less snow

» Low snowpack and earlier melt out and runoff

» Increased potential for mid-winter flooding

» Lower summer flows

» Counterintuitively, increased total water year flows

These patterns are already apparent in the observed snow
and streamflow data — So it’s safe to start planning for this...
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Example: Potential for Future Variability
Outside Range of Observations

Generalized Runoff Regimes

Time Period

After Lutz et al. 2011 and
Littell et al. in press

-Reconstructions show the
potential for runoff
variability outside the
bounds of observations
(wetter, dryer or both)

- Hydro modeling based on
future climate scenarios
suggesting a potential for
greater flooding and more
iIntense droughts



What do we know?
Future Climate = Natural Variability + Warming
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We tend to think of future
climate change as a simple
linear trend. ..
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What do we know?
Future Climate = Natural Variability + Warming
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We tend to think of future Future climate will be a
climate change as a simple combination of human-induced
linear trend... trends and natural variability
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What do we know?
Future Climate = Natural Variability + Warming
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We tend to think of future Future climate will be a
climate change as a simple combination of human-induced
linear trend... trends and natural variability

So no, a changing climate is not all bad for Montana. When we are
getting ample precipitation things will actually be pretty darn good.

Example, recent AgQ production increases...
Gray et al. (2006), Ecology 87:1124-1130



Thanks for Listening. Questions?
More forthcoming work on the Missouri and
Yellowstone...

See: http://www.nrmsc.usgs.qov/MissouriRiverWater
for more project information, data and publications.







Paleohyadrology

Develop long records (1,000+ years) of water year
streamflow at stakeholder selected stream gage

locations

management operations with State and Federal
Water Managers™ (caveats on future slides)

Contextualize projections of future streamflow and
with paleohydrologic records, and develop drought
(i.e. climate change) adaptation plans with local

watershed groups

Project Website: Missouri River Paleohydrology Project

':I Use the records to drive and test current flow




So when a hydrologic system
has strong decadal
persistence, how do we
contextualize change ana

natural variability in short
observational flow records?

e

TREE RINGS
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374 Tree-Ring Chronologies from 20 Species
Approximately 116 of the Chronologies are new or updated




RiverWare

Model
*Requires daily data, with runs up to 100 year time periods _ ...% . wrnos \
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« Allows for evaluation of river & reservoir
operations under various water supply and
demand conditions including:

— Historical hydrology and demand
— Paleohydrology (working on paleo-demand)

— Future climate change scenario hydrology and
projected demand
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Context For Future Flow Projections

Missouri @ Ft. Benton
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Annual streamflow reconstructions disaggregated in time

(daily) and space to all RiverWare inflow nodes upstream



